(0) Obligation:

Clauses:

p(s(0), 0).
p(s(s(X)), s(s(Y))) :- p(s(X), s(Y)).
plus(0, Y, Y).
plus(s(X), Y, s(Z)) :- ','(p(s(X), U), plus(U, Y, Z)).

Query: plus(g,a,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

pA(s(T27), s(X40)) :- pA(T27, X40).
plusB(0, T5, T5).
plusB(s(0), T20, s(T20)).
plusB(s(s(T23)), T12, s(T13)) :- pA(T23, X31).
plusB(s(s(T23)), T12, s(T13)) :- ','(pA(T23, T24), plusB(s(s(T24)), T12, T13)).

Query: plusB(g,a,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
plusB_in: (b,f,f)
pA_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

plusB_in_gaa(0, T5, T5) → plusB_out_gaa(0, T5, T5)
plusB_in_gaa(s(0), T20, s(T20)) → plusB_out_gaa(s(0), T20, s(T20))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U2_gaa(T23, T12, T13, pA_in_ga(T23, X31))
pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))
U2_gaa(T23, T12, T13, pA_out_ga(T23, X31)) → plusB_out_gaa(s(s(T23)), T12, s(T13))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U3_gaa(T23, T12, T13, pA_in_ga(T23, T24))
U3_gaa(T23, T12, T13, pA_out_ga(T23, T24)) → U4_gaa(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U4_gaa(T23, T12, T13, plusB_out_gaa(s(s(T24)), T12, T13)) → plusB_out_gaa(s(s(T23)), T12, s(T13))

The argument filtering Pi contains the following mapping:
plusB_in_gaa(x1, x2, x3)  =  plusB_in_gaa(x1)
0  =  0
plusB_out_gaa(x1, x2, x3)  =  plusB_out_gaa
s(x1)  =  s(x1)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

plusB_in_gaa(0, T5, T5) → plusB_out_gaa(0, T5, T5)
plusB_in_gaa(s(0), T20, s(T20)) → plusB_out_gaa(s(0), T20, s(T20))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U2_gaa(T23, T12, T13, pA_in_ga(T23, X31))
pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))
U2_gaa(T23, T12, T13, pA_out_ga(T23, X31)) → plusB_out_gaa(s(s(T23)), T12, s(T13))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U3_gaa(T23, T12, T13, pA_in_ga(T23, T24))
U3_gaa(T23, T12, T13, pA_out_ga(T23, T24)) → U4_gaa(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U4_gaa(T23, T12, T13, plusB_out_gaa(s(s(T24)), T12, T13)) → plusB_out_gaa(s(s(T23)), T12, s(T13))

The argument filtering Pi contains the following mapping:
plusB_in_gaa(x1, x2, x3)  =  plusB_in_gaa(x1)
0  =  0
plusB_out_gaa(x1, x2, x3)  =  plusB_out_gaa
s(x1)  =  s(x1)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → U2_GAA(T23, T12, T13, pA_in_ga(T23, X31))
PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → PA_IN_GA(T23, X31)
PA_IN_GA(s(T27), s(X40)) → U1_GA(T27, X40, pA_in_ga(T27, X40))
PA_IN_GA(s(T27), s(X40)) → PA_IN_GA(T27, X40)
PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → U3_GAA(T23, T12, T13, pA_in_ga(T23, T24))
U3_GAA(T23, T12, T13, pA_out_ga(T23, T24)) → U4_GAA(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U3_GAA(T23, T12, T13, pA_out_ga(T23, T24)) → PLUSB_IN_GAA(s(s(T24)), T12, T13)

The TRS R consists of the following rules:

plusB_in_gaa(0, T5, T5) → plusB_out_gaa(0, T5, T5)
plusB_in_gaa(s(0), T20, s(T20)) → plusB_out_gaa(s(0), T20, s(T20))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U2_gaa(T23, T12, T13, pA_in_ga(T23, X31))
pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))
U2_gaa(T23, T12, T13, pA_out_ga(T23, X31)) → plusB_out_gaa(s(s(T23)), T12, s(T13))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U3_gaa(T23, T12, T13, pA_in_ga(T23, T24))
U3_gaa(T23, T12, T13, pA_out_ga(T23, T24)) → U4_gaa(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U4_gaa(T23, T12, T13, plusB_out_gaa(s(s(T24)), T12, T13)) → plusB_out_gaa(s(s(T23)), T12, s(T13))

The argument filtering Pi contains the following mapping:
plusB_in_gaa(x1, x2, x3)  =  plusB_in_gaa(x1)
0  =  0
plusB_out_gaa(x1, x2, x3)  =  plusB_out_gaa
s(x1)  =  s(x1)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
PLUSB_IN_GAA(x1, x2, x3)  =  PLUSB_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → U2_GAA(T23, T12, T13, pA_in_ga(T23, X31))
PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → PA_IN_GA(T23, X31)
PA_IN_GA(s(T27), s(X40)) → U1_GA(T27, X40, pA_in_ga(T27, X40))
PA_IN_GA(s(T27), s(X40)) → PA_IN_GA(T27, X40)
PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → U3_GAA(T23, T12, T13, pA_in_ga(T23, T24))
U3_GAA(T23, T12, T13, pA_out_ga(T23, T24)) → U4_GAA(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U3_GAA(T23, T12, T13, pA_out_ga(T23, T24)) → PLUSB_IN_GAA(s(s(T24)), T12, T13)

The TRS R consists of the following rules:

plusB_in_gaa(0, T5, T5) → plusB_out_gaa(0, T5, T5)
plusB_in_gaa(s(0), T20, s(T20)) → plusB_out_gaa(s(0), T20, s(T20))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U2_gaa(T23, T12, T13, pA_in_ga(T23, X31))
pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))
U2_gaa(T23, T12, T13, pA_out_ga(T23, X31)) → plusB_out_gaa(s(s(T23)), T12, s(T13))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U3_gaa(T23, T12, T13, pA_in_ga(T23, T24))
U3_gaa(T23, T12, T13, pA_out_ga(T23, T24)) → U4_gaa(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U4_gaa(T23, T12, T13, plusB_out_gaa(s(s(T24)), T12, T13)) → plusB_out_gaa(s(s(T23)), T12, s(T13))

The argument filtering Pi contains the following mapping:
plusB_in_gaa(x1, x2, x3)  =  plusB_in_gaa(x1)
0  =  0
plusB_out_gaa(x1, x2, x3)  =  plusB_out_gaa
s(x1)  =  s(x1)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
PLUSB_IN_GAA(x1, x2, x3)  =  PLUSB_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GA(s(T27), s(X40)) → PA_IN_GA(T27, X40)

The TRS R consists of the following rules:

plusB_in_gaa(0, T5, T5) → plusB_out_gaa(0, T5, T5)
plusB_in_gaa(s(0), T20, s(T20)) → plusB_out_gaa(s(0), T20, s(T20))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U2_gaa(T23, T12, T13, pA_in_ga(T23, X31))
pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))
U2_gaa(T23, T12, T13, pA_out_ga(T23, X31)) → plusB_out_gaa(s(s(T23)), T12, s(T13))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U3_gaa(T23, T12, T13, pA_in_ga(T23, T24))
U3_gaa(T23, T12, T13, pA_out_ga(T23, T24)) → U4_gaa(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U4_gaa(T23, T12, T13, plusB_out_gaa(s(s(T24)), T12, T13)) → plusB_out_gaa(s(s(T23)), T12, s(T13))

The argument filtering Pi contains the following mapping:
plusB_in_gaa(x1, x2, x3)  =  plusB_in_gaa(x1)
0  =  0
plusB_out_gaa(x1, x2, x3)  =  plusB_out_gaa
s(x1)  =  s(x1)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GA(s(T27), s(X40)) → PA_IN_GA(T27, X40)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PA_IN_GA(x1, x2)  =  PA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PA_IN_GA(s(T27)) → PA_IN_GA(T27)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PA_IN_GA(s(T27)) → PA_IN_GA(T27)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → U3_GAA(T23, T12, T13, pA_in_ga(T23, T24))
U3_GAA(T23, T12, T13, pA_out_ga(T23, T24)) → PLUSB_IN_GAA(s(s(T24)), T12, T13)

The TRS R consists of the following rules:

plusB_in_gaa(0, T5, T5) → plusB_out_gaa(0, T5, T5)
plusB_in_gaa(s(0), T20, s(T20)) → plusB_out_gaa(s(0), T20, s(T20))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U2_gaa(T23, T12, T13, pA_in_ga(T23, X31))
pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))
U2_gaa(T23, T12, T13, pA_out_ga(T23, X31)) → plusB_out_gaa(s(s(T23)), T12, s(T13))
plusB_in_gaa(s(s(T23)), T12, s(T13)) → U3_gaa(T23, T12, T13, pA_in_ga(T23, T24))
U3_gaa(T23, T12, T13, pA_out_ga(T23, T24)) → U4_gaa(T23, T12, T13, plusB_in_gaa(s(s(T24)), T12, T13))
U4_gaa(T23, T12, T13, plusB_out_gaa(s(s(T24)), T12, T13)) → plusB_out_gaa(s(s(T23)), T12, s(T13))

The argument filtering Pi contains the following mapping:
plusB_in_gaa(x1, x2, x3)  =  plusB_in_gaa(x1)
0  =  0
plusB_out_gaa(x1, x2, x3)  =  plusB_out_gaa
s(x1)  =  s(x1)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
PLUSB_IN_GAA(x1, x2, x3)  =  PLUSB_IN_GAA(x1)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUSB_IN_GAA(s(s(T23)), T12, s(T13)) → U3_GAA(T23, T12, T13, pA_in_ga(T23, T24))
U3_GAA(T23, T12, T13, pA_out_ga(T23, T24)) → PLUSB_IN_GAA(s(s(T24)), T12, T13)

The TRS R consists of the following rules:

pA_in_ga(s(T27), s(X40)) → U1_ga(T27, X40, pA_in_ga(T27, X40))
U1_ga(T27, X40, pA_out_ga(T27, X40)) → pA_out_ga(s(T27), s(X40))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
pA_in_ga(x1, x2)  =  pA_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
pA_out_ga(x1, x2)  =  pA_out_ga(x2)
PLUSB_IN_GAA(x1, x2, x3)  =  PLUSB_IN_GAA(x1)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUSB_IN_GAA(s(s(T23))) → U3_GAA(pA_in_ga(T23))
U3_GAA(pA_out_ga(T24)) → PLUSB_IN_GAA(s(s(T24)))

The TRS R consists of the following rules:

pA_in_ga(s(T27)) → U1_ga(pA_in_ga(T27))
U1_ga(pA_out_ga(X40)) → pA_out_ga(s(X40))

The set Q consists of the following terms:

pA_in_ga(x0)
U1_ga(x0)

We have to consider all (P,Q,R)-chains.

(21) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

PLUSB_IN_GAA(s(s(T23))) → U3_GAA(pA_in_ga(T23))
U3_GAA(pA_out_ga(T24)) → PLUSB_IN_GAA(s(s(T24)))

Strictly oriented rules of the TRS R:

pA_in_ga(s(T27)) → U1_ga(pA_in_ga(T27))
U1_ga(pA_out_ga(X40)) → pA_out_ga(s(X40))

Used ordering: Knuth-Bendix order [KBO] with precedence:
pAinga1 > U1ga1 > pAoutga1 > U3GAA1 > PLUSBINGAA1 > s1

and weight map:

pA_in_ga_1=1
s_1=3
U1_ga_1=3
pA_out_ga_1=2
PLUSB_IN_GAA_1=1
U3_GAA_1=5

The variable weight is 1

(22) Obligation:

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

pA_in_ga(x0)
U1_ga(x0)

We have to consider all (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) YES